Sunday 5 February 2023

NEET Exam Pattern Highlights and Syllabus 2023

 

NEET 2023 Class and Subject-wise Syllabus:

NEET Exam Pattern Highlights 


Total Number of Questions in NEET

200 Questions

Number of Questions to be attempt- ed out of 200 Questions

180 Questions

Total Marks

720 Marks

Number of questions in each subject and section

Physics: 

Section A -35, Section B - 15

Chemistry: 

Section A-35, Section B-15

Zoology: 

Section A -35, Section B - 15

Botany: 

Section A-35, Section B - 15

Internal Choice in NEET Question Paper

Yes; Section B in each subject- attempt only 10 questions out of 15 questions

Marking Scheme

Each correct answer + 4 marks.

For each incorrect answer, -1 mark

Type of Questions

Multiple Choice Questions (MCQs) and four options based.

Exam Mode

Offline (Pen and Paper Test)

Duration

3 hours

Language options in NEET

13 languages: English, Hindi, Assamese, Bengali, Gujarati, Kannada, Malayalam, Marathi, Odia, Punjabi, Tamil, Telugu, and Urdu.



Latest Syllabus

NEET PHYSICS SYLLABUS 2023

The Medical Council of India (MCI) recommended the following syllabus for NATIONAL ELIGIBILITY  CUM ENTRANCE TEST for admission to MBBS/BDS courses across the country after review of various  State syllabi as well as those prepared by CBSE, NCERT and COBSE. This is to establish uniformity across  the country keeping in view the relevance of different areas in Medical Education.  S. No. CLASS XI S. No. CLASS

 

Class 11th Syllabus

Class 12th Syllabus

Physical world and measurement

Electro statistics

Kinematics

Current Electricity

Laws of Motion

Magnetic effects of Current and Magnetism

Work, Energy, and Power

Electromagnetic induction and alternating currents

Motion of systems of particles and rigid body

Electromagnetic waves

Gravitation

Optics

Properties of Bulk Matter

Dual Nature of Matter and Radiation

Thermodynamics

Atoms and Nuclei

Behavior of Perfect Gas and Kinetic theory

Electronic Devices

Oscillations and wave

 



PHYSICS: CONTENTS OF CLASS XI SYLLABUS

 

UNIT I: Physical World and Measurement

      Physics: Scope and excitement; nature of physical laws; Physics, technology, and society.

     Need for measurement: Units of measurement; systems of units; SI units, fundamental and derived units. Length, mass, and time measurements; accuracy and precision of measuring instruments; errors in measurement; significant figures.

     Dimensions of physical quantities, dimensional analysis, and its applications.

 

UNIT II: Kinematics

     A frame of reference, Motion in a straight line; Position-time graph, speed, and velocity. Uniform and non-uniform motion, average speed, and instantaneous velocity. Uniformly accelerated motion, velocity-time, and position-time graphs, for uniformly accelerated motion (graphical treatment).

    Elementary concepts of differentiation and integration for describing motion. Scalar and vector quantities: Position and displacement vectors, general vectors, general vectors and notation, equality of vectors, multiplication of vectors by a real number; addition and subtraction of vectors. Relative velocity.

    Unit vectors. Resolution of a vector in a plane-rectangular component

    Scalar and Vector products of Vectors. Motion in a plane. Cases of uniform velocity and uniform acceleration- projectile motion. Uniform circular motion.

 

UNIT III: Laws of Motion

 ·           Intuitive concept of force. Inertia, Newton’s first law of motion; momentum and Newton’s second law of motion; impulse; Newton’s third law of motion. Law of conservation of linear momentum and its applications.

 ·           Equilibrium of concurrent forces. Static and Kinetic friction, laws of friction, rolling friction, lubrication.

 ·           Dynamics of uniform circular motion. Centripetal force, examples of circular motion (vehicle on level circular road, vehicle on banked road).

 

UNIT IV: Work, Energy, and Power

          Work done by a constant force and variable force; kinetic energy, work-energy theorem, power.

          Notion of potential energy, the potential energy of a spring, conservative forces; conservation of mechanical energy (kinetic and potential energies); nonconservative forces; motion in a vertical circle, elastic and inelastic collisions in one and two dimensions.


UNIT V: Motion of System of Particles and Rigid Body

          Centre of mass of a two-particle system, momentum conservation, and centre of mass motion. Centre of mass of a rigid body; centre of mass of uniform rod.

          Moment of a force,-torque, angular momentum, conservation of angular momentum with some examples.

          Equilibrium of rigid bodies, rigid body rotation, and equation of rotational motion, comparison of linear and rotational motions; the moment of inertia, the radius of gyration. Values of M.I. for simple geometrical objects (no derivation). Statement of parallel and perpendicular axes theorems and their applications.

 

UNIT VI: Gravitation

      Kepler’s laws of planetary motion. The universal law of gravitation. Acceleration due to gravity and its variation with altitude and depth.

      Gravitational potential energy; gravitational potential. Escape velocity, orbital velocity of a satellite. Geostationary satellites.


 UNIT VII: Properties of Bulk Matter

          Elastic behavior, Stress-strain relationship. Hooke’s law, Young’s modulus, bulk modulus, shear, modulus of rigidity, poisson’s ratio; elastic energy.

          Viscosity, Stokes’ law, terminal velocity, Reynold’s number, streamline and turbulent flow. Critical velocity, Bernoulli’s theorem and its applications.

          Surface energy and surface tension, angle of contact, excess of pressure, application of surface tension ideas to drops, bubbles and capillary rise.

          Heat, temperature, thermal expansion; thermal expansion of solids, liquids, and gases. Anomalous expansion. Specific heat capacity: Cp, Cv- calorimetry; change of state – latent heat.

          Heat transfer- conduction and thermal conductivity, convection and radiation. Qualitative ideas of Black Body Radiation, Wein’s displacement law, and Green House effect.

          Newton’s law of cooling and Stefan’s law. 


UNIT VIII: Thermodynamics

          Thermal equilibrium and definition of temperature (zeroth law of Thermodynamics). Heat, work and internal energy. First law of thermodynamics. Isothermal and adiabatic processes.

          Second law of the thermodynamics: Reversible and irreversible processes. Heat engines and refrigerators. 

UNIT IX: Behaviour of Perfect Gas and Kinetic Theory

Eq      Equation of state of a perfect gas, work done on compressing a gas.


      Kinetic theory of gases: Assumptions, concept of pressure. Kinetic energy and temperature; degrees of freedom, law of equipartition of energy (statement only) and application to specific heat capacities of gases; concept of mean free path.

UNIT X: Oscillations and Waves

          Periodic motion-period, frequency, displacement as a function of time. Periodic functions. Simple harmonic motion(SHM) and its equation; phase; oscillations of a spring-restoring force and force constant; energy in SHM –Kinetic and potential energies; simple pendulum-derivation of expression for its time period; free, forced and damped oscillations (qualitative ideas only), resonance.

          Wave motion. Longitudinal and transverse waves, speed of wave motion. Displacement relation for a progressive wave. Principle of superposition of waves, reflection of waves, standing waves in strings and organ pipes, fundamental mode and harmonics. Beats. Doppler effect.

 

PHYSICS: CONTENTS OF CLASS XII SYLLABUS

 

UNIT I: Electrostatics

          Electric charges and their conservation. Coulomb’s law-force between two point charges, forces between multiple charges; superposition principle and continuous charge distribution.

          Electric field, electric field due to a point charge, electric field lines; electric dipole, electric field due to a dipole; torque on a dipole in a uniform electric field.

          Electric flux, statement of Gauss’s theorem and its applications to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell (field inside and outside)

          Electric potential, potential difference, electric potential due to a point charge, a dipole and system of charges: equipotential surfaces, electrical potential energy of a system of two point charges and of electric diploes in an electrostatic field.

          Conductors and insulators, free charges and bound charges inside a conductor. Dielectrics and electric polarization, capacitors and capacitance, combination of capacitors in series and in parallel, capacitance of a parallel plate capacitor with and without dielectric medium between the plates, energy stored in a capacitor, Van de Graaff generator.


UNIT II: Current Electricity

          Electric current, the flow of electric charges in a metallic conductor, drift velocity and mobility, and their relation with electric current; Ohm’s law, electrical resistance, V-I characteristics (liner and non- linear), electrical energy and power, electrical resistivity, and conductivity.

          Carbon resistors, color code for carbon resistors; series and parallel combinations of resistors; temperature dependence of resistance.

          Internal resistance of a cell, potential difference and emf of a cell, combination of cells in series and in parallel.

          Kirchhoff’s laws and simple applications. Wheatstone bridge, metre bridge.

          Potentiometer-principle and applications to measure potential difference, and for comparing emf of two cells; measurement of internal resistance of a cell.

 

UNIT III: Magnetic Effects of Current and Magnetism

          Concept of magnetic field, Oersted’s experiment. Biot-Savart law and its application to current carrying circular loop.

          Ampere’s law and its applications to infinitely long straight wire, straight and toroidal solenoids. Force on a moving charge in uniform magnetic and electric fields. Cyclotron.

          Force on a current-carrying conductor in a uniform magnetic field. Force between two parallel current-carrying conductors-definition of ampere. Torque experienced by a current loop in a magnetic field; moving coil galvanometer-its current sensitivity and conversion to ammeter and voltmeter.

          Current loop as a magnetic dipole and its magnetic dipole moment. Magnetic dipole moment of a revolving electron. Magnetic field intensity due to a magnetic dipole (bar magnet) along its axis and perpendicular to its axis. Torque on a magnetic dipole (bar magnet) in a uniform magnetic field; bar magnet as an equivalent solenoid, magnetic field lines; Earth’s magnetic field and magnetic elements.

          Para-, dia-and ferro-magnetic substances, with examples.

          Electromagnetic and factors affecting their strengths. Permanent magnets.

 

UNIT IV: Electromagnetic Induction and Alternating Currents

          Electromagnetic induction; Faraday’s law, induced emf and current; Lenz’s Law, Eddy currents. Self and mutual inductance.

          Alternating currents, peak and rms value of alternating current/ voltage; reactance and impedance; LC oscillations (qualitative treatment only), LCR series circuit, resonance; power in AC circuits, wattles current.

          AC generator and transformer.

 

UNIT V: Electromagnetic Waves

 Need for displacement current.

                    Electromagnetic waves and their characteristics (qualitative ideas only). Transverse nature of electromagnetic waves.

           Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, x-rays, gamma rays) including elementary facts about their uses.

 

UNIT VI: Optics

          Reflection of light, spherical mirrors, mirror formula. Refraction of light, total internal reflection and its applications optical fibres, refraction at spherical surfaces, lenses, thin lens formula, lens-maker’s formula. Magnification, power of a lens, combination of thin lenses in contact combination of a lens and a mirror. Refraction and dispersion of light through a prism.

          Scattering of light- blue colour of the sky and reddish appearance of the sun at sunrise and sunset.

          Optical instruments: Human eye, image formation and accommodation, correction of eye defects (myopia and hypermetropia) using lenses.

          Microscopes and astronomical telescopes (reflecting and refracting) and their magnifying powers.

          Wave optics: Wavefront and Huygens’ principle, reflection and refraction of plane wave at a plane surface using wavefronts.

          Proof of laws of reflection and refraction using Huygens’ principle.

          Interference, Young’s double hole experiment and expression for fringe width, coherent sources and sustained interference of light.

          Diffraction due to a single slit, width of central maximum.

          Resolving power of microscopes and astronomical telescopes. Polarisation, plane polarized light; Brewster’s law, uses of plane polarized light and Polaroids.

 

UNIT VII: Dual Nature of Matter and Radiation

          Photoelectric effect, Hertz and Lenard’s observations; Einstein’s photoelectric equation- particle nature of light.

          Matter waves- wave nature of particles, de Broglie relation. Davisson-Germer experiment (experimental details should be omitted; only conclusion should be explained).

 

UNIT VIII: Atoms and Nuclei

          Alpha- particle scattering experiments; Rutherford’s model of atom; Bohr model, energy levels, hydrogen spectrum. Composition and size of nucleus, atomic masses, isotopes, isobars; isotones.

          Radioactivity- alpha, beta and gamma particles/ rays and their properties decay law. Mass-energy relation, mass defect; binding energy per nucleon and its variation with mass number, nuclear fission and fusion.

 

UNIT IX: Electronic Devices

          Energy bands in solids (qualitative ideas only), conductors, insulators and semiconductors; semiconductor diode- I-V characteristics in forward and reverse bias, diode as a rectifier; I-V characteristics of LED, diode, solar cell, and Zener diode; Zener diode as a voltage regulator. Junction transistor, transistor action, characteristics of a transistor; transistor as an amplifier (common emitter configuration) and oscillator. Logic gates (OR, AND, NOT, NAND and NOR). Transistor as a switch.



NEET CHEMISTRY SYLLABUS 2023

Class 11th Syllabus

Class 12th Syllabus

Some basic concepts of Chemistry

Solid state

Structure of atom

Solutions

Classification of Elements and Periodicity in Properties

Electrochemistry

Chemical Bonding and Molecular structure

Chemical Kinetics

States of Matter: Gases and liquids

Surface Chemistry

Thermodynamics

General principles and Processes of Isolation of Elements

Equilibrium

P Block elements

Redox reactions

D and F block elements

Hydrogen

Coordination compounds

s-Block elements (Alkali and Alkaline earth metals)

Haloalkanes and Haloarenes

Some p-Block elements

Alcohols, Phenols and Ethers

Organic Chemistry – Some basic principles and techniques

Aldehydes, Ketones and Carboxylic Acids

Hydrocarbons

Organic compounds containing Nitrogen

Environmental chemistry

Biomolecules, Polymers and Chemistry in everyday life


 CHEMISTRY: CONTENTS OF CLASS XI SYLLABUS

UNIT I: Some Basic Concepts of Chemistry

• General Introduction: Important and scope of chemistry.

• Laws of chemical combination, Dalton’s atomic theory: concept of elements, atoms and

molecules.

• Atomic and molecular masses. Mole concept and molar mass; percentage composition and

empirical and molecular formula; chemical reactions, stoichiometry and calculations based on

stoichiometry.

UNIT II: Structure of Atom

• Atomic number, isotopes and isobars. Concept of shells and subshells, dual nature of matter and

light, de Broglie’s relationship, Heisenberg uncertainty principle, concept of orbital, quantum

numbers, shapes of s,p and d orbitals, rules for filling electrons in orbitals- Aufbau principle, Pauli

exclusion principles and Hund’s rule, electronic configuration of atoms, stability of half filled and

completely filled orbitals.

UNIT III: Classification of Elements and Periodicity in Properties

• Modern periodic law and long form of periodic table, periodic trends in properties of elementsatomic

radii, ionic radii, ionization enthalpy, electron gain enthalpy, electrone gativity, valence.

UNIT IV: Chemical Bonding and Molecular Structure

• Valence electrons, ionic bond, covalent bond, bond parameters, Lewis structure, polar character

of covalent bond, valence bond theory, resonance, geometry of molecules, VSEPR theory, concept

of hybridization involving s, p and d orbitals and shapes of some simple molecules, molecular

orbital theory of homonuclear diatomic molecules (qualitative idea only). Hydrogen bond.

UNIT V: States of Matter: Gases and Liquids

• Three states of matter, intermolecular interactions, types of bonding, melting and boiling points,

role of gas laws of elucidating the concept of the molecule, Boyle’s law, Charle’s law, Gay

Lussac’s law, Avogadro’s law, ideal behaviour of gases, empirical derivation of gas equation.

Avogadro number, ideal gas equation. Kinetic energy and molecular speeds (elementary idea),

deviation from ideal behaviour, liquefaction of gases, critical temperature.

• Liquid State- Vapour pressure, viscosity and surface tension (qualitative idea only, no

mathematical derivations).

UNIT VI : Thermodynamics

• First law of thermodynamics-internal energy and enthalpy, heat capacity and specific heat,

measurement of U and H, Hess’s law of constant heat summation, enthalpy of : bond dissociation,

combustion, formation, atomization, sublimation, phase transition, ionization, solution and

dilution.

• Introduction of entropy as state function, Second law of thermodynamics, Gibbs energy change

for spontaneous and non-spontaneous process, criteria for equilibrium and spontaneity.

• Third law of thermodynamics- Brief introduction.

UNIT VII: Equilibrium

• Equilibrium in physical and chemical processes, dynamic nature of equilibrium, law of chemical

equilibrium, equilibrium constant, factors affecting equilibrium- Le Chatelier’s principle; ionic

equilibrium- ionization of acids and bases, strong and weak electrolytes, degree of ionization,

ionization of polybasic acids, acid strength, concept of pH., Hydrolysis of salts (elementary idea).,

buffer solutions, Henderson equation, solubility product, common ion effect (with illustrative

examples).

UNIT VIII: Redox Reactions

• Concept of oxidation and oxidation and reduction, redox reactions oxidation number, balancing

redox reactions in terms of loss and gain of electron and change in oxidation numbers.

UNIT IX: Hydrogen

• Occurrence, isotopes, preparation, properties and uses of hydrogen; hydridesionic, covalent and

interstitial; physical and chemical properties of water, heavy water; hydrogen peroxidepreparation,

reactions, uses and structure;

UNIT X: s-Block Elements (Alkali and Alkaline earth metals)

• Group I and group 2 elements:

• General introduction, electronic configuration, occurrence, anomalous properties of the first

element of each group, diagonal relationship, trends in the variation of properties (such as

ionization enthalpy, atomic and ionic radii), trends in chemical reactivity with oxygen, water,

hydrogen and halogens; uses.

• Preparation and Properties of Some important Compounds:

• Sodium carbonate, sodium chloride, sodium hydroxide and sodium hydrogencarbonate, biological

importance of sodium and potassium.

• Industrial use of lime and limestone, biological importance of Mg and Ca.

UNIT XI: Some p-Block Elements

• General Introduction to p-Block Elements.

• Group 13 elements: General introduction, electronic configuration, occurrence, variation of

properties, oxidation states, trends in chemical reactivity, anomalous properties of first element of

the group; Boron, some important compounds: borax, boric acids, boron hydrides. Aluminium:

uses, reactions with acids and alkalies.

• General 14 elements: General introduction, electronic configuration, occurrence, variation of

properties, oxidation states, trends in chemical reactivity, anomalous behaviour of first element.

Carbon, allotropic forms, physical and chemical properties: uses of some important compounds:

oxides.

• Important compounds of silicon and a few uses: silicon tetrachloride, silicones, silicates and

zeolites, their uses.

UNIT XII: Organic Chemistry- Some Basic Principles and Techniques

• General introduction, methods of purification qualitative and quantitative analysis, classification

and IUPAC nomenclature of organic compounds.

• Electronic displacements in a covalent bond: inductive effect, electromeric effect, resonance and

hyper conjugation.

• Homolytic and heterolytic fission of a covalent bond: free radials, carbocations, carbanions;

electrophiles and nucleophiles, types of organic reactions.

UNIT XIII: Hydrocarbons

• Alkanes- Nomenclature, isomerism, conformations (ethane only), physical properties, chemical

reactions including free radical mechanism of halogenation, combustion and pyrolysis.

• Alkanes-Nomenclature, structure of double bond (ethene), geometrical isomerism, physical

properties, methods of preparation: chemical reactions: addition of hydrogen, halogen, water,

hydrogen halides (Markovnikov’s addition and peroxide effect), ozonolysis, oxidation,

mechanism of electrophilic addition.

• Alkynes-Nomenclature, structure of triple bond (ethyne), physical properties, methods of

preparation, chemical reactions: acidic character of alkynes, addition reaction of- hydrogen,

halogens, hydrogen halides and water.

• Aromatic hydrocarbons- Introduction, IUPAC nomenclature; Benzene; resonance, aromaticity;

chemical properties: mechanism of electrophilic substitution-Nitration sulphonation,

halogenation, Friedel Craft’s alkylation and acylation; directive influence of functional group in

mono-substituted benzene; carcinogenicity and toxicity.

UNIT XIV: Environmental Chemistry

• Environmental pollution: Air, water and soil pollution, chemical reactions in atmosphere, smogs,

major atmospheric pollutants; acid rain ozone and its reactions, effects of depletion of ozone layer,

greenhouse effect and global warming-pollution due to industrial wastes; green chemistry as an

alternative tool for reducing pollution, strategy for control of environmental pollution.


CHEMISTRY: CONTENTS OF CLASS XII SYLLABUS

UNIT I: Solid State

• Classification of solids based on different binding forces; molecular, ionic covalent and metallic

solids, amorphous and crystalline solids (elementary idea), unit cell in two dimensional and three

dimensional lattices, calculation of density of unit cell, packing in solids, packing efficiency,

voids, number of atoms per unit cell in a cubic unit cell, point defects, electrical and magnetic

properties, Band theory of metals, conductors, semiconductors and insulators.

UNIT II: Solutions

• Types of solutions, expression of concentration of solutions of solids in liquids, solubility of gases

in liquids, solid solutions, colligative properties- relative lowering of vapour pressure, Raoult’s

law, elevation of boiling point, depression of freezing point, osmotic pressure, determination of

molecular masses using colligative properties abnormal molecular mass. Van Hoff factor.

UNIT III: Electrochemistry

• Redox reactions, conductance in electrolytic solutions, specific and molar conductivity variation

of conductivity with concentration, kohlrausch’s Law, electrolysis and Laws of electrolysis

(elementary idea), dry cell- electrolytic cells and Galvanic cells; lead accumulator, EMF of a cell,

standard electrode potential, Relation between Gibbs energy change and EMF of a cell, fuel cells;

corrosion.

UNIT IV: Chemical Kinetics

• Rate of a reaction (average and instantaneous), factors affecting rates of reaction; concentration,

temperature, catalyst; order and molecularity of a reaction; rate law and specific rate constant,

integrated rate equations and half life (only for zero and first order reactions); concept of collision

theory ( elementary idea, no mathematical treatment). Activation energy, Arrhenious equation.

UNIT V: Surface Chemistry

• Adsorption-physisorption and chemisorption; factors affecting adsorption of gases on solids,

catalysis homogeneous and heterogeneous, activity and selectivity: enzyme catalysis; colloidal

state: distinction between true solutions, colloids and suspensions; lyophillic, lyophobic

multimolecular and macromolecular colloids; properties of colloids; Tyndall effect, Brownian

movement, electrophoresis, coagulation; emulsions- types of emulsions.

UNIT VI: General Principles and Processes of Isolation of Elements

• Principles and methods of extraction- concentration, oxidation, reduction electrolytic method and

refining; occurrence and principles of extraction of aluminium, copper, zinc and iron.

UNIT VII: p- Block Elements

• Group 15 elements: General introduction, electronic configuration, occurrence, oxidation states,

trends in physical and chemical properties; preparation and properties of ammonia and nitric acid,

oxides of nitrogen (structure only); Phosphorous- allotropic forms; compounds of phosphorous:

preparation and properties of phosphine, halides (PCI3, PCI5) and oxoacids (elementary idea

only).

• Group 16 elements: General introduction, electronic configuration, oxidation states, occurrence,

trends in physical and chemical properties; dioxygen: preparation, properties and uses;

classification of oxides; ozone. Sulphur – allotropic forms; compounds of sulphur: preparation,

preparation, properties and uses of sulphur dioxide; sulphuric acid: industrial process of

manufacture, properties and uses, oxoacids of sulphur (structures only).

• Group 17 elements: General introduction, electronic configuration, oxidation states, occurrence,

trends in physical and chemical properties; compounds of halogens: preparation, properties and

uses of chlorine and hydrochloric acid, interhalogen compounds oxoacids of halogens (structures

only).

• Group 18 elements: General introduction, electronic configuration, occurrence, trends in physical

and chemical properties, uses.

UNIT VIII: d and f Block Elements

• General introduction, electronic configuration, characteristics of transition metals, general trends

in properties of the first row transition metals- metallic character, ionization enthalpy, oxidation

states, ionic radii, colour, catalytic property, magnetic properties, interstitial compounds, alloy

formation. Preparation and properties of K2Cr2O7 and KMnO4.

• Lanthanoids- electronic configuration, oxidation states, chemical reactivity, and lanthanoid

contraction and its consequences.

• Actinoids: Electronic configuration, oxidation states and comparison with lanthanoids.

UNIT IX: Coordination Compounds

• Coordination compounds: Introduction, ligands, coordination number, colour, magnetic

properties and shapes, IUPAC nomenclature of mononuclear coordination compounds, isomerism

(structural and stereo) bonding, Werner’s theory VBT,CFT; importance of coordination

compounds (in qualitative analysis, biological systems).

UNIT X: Haloalkanes and Haloarenes

• Haloalkanes: Nomenclature, nature of C –X bond, physical and chemical properties, mechanism

of substitution reactions. Optical rotation.

• Haloarenes: Nature of C-X bond, substitution reactions (directive influence of halogen for

monosubstituted compounds only).

• Uses and environment effects of – dichloromethane, trichloromethane, tetrachloromethane,

iodoform, freons, DDT.

UNIT XI: Alcohols, Phenols and Ethers

• Alcohols: Nomenclature, methods of preparation, physical and chemical properties (of primary

alcohols only); identification of primary, secondary and tertiary alcohols; mechanism of

dehydration, uses with special reference to methanol and ethanol.

• Phenols: Nomenclature, methods of preparation, physical and chemical properties, acidic nature

of phenol, electrophillic substitution reactions, uses of phenols.

• Ethers: Nomenclature, methods of preparation, physical and chemical properties uses.

UNIT XII: Aldehydes, Ketones and Carboxylic Acids

• Aldehydes and Ketones: Nomenclature, nature of carbonyl group, methods of preparation, physical

and chemical properties; and mechanism of nucleophilic addition, reactivity of alpha hydrogen in

aldehydes; uses.

• Carboxylic Acids: Nomenclature, acidic nature, methods of preparation, physical and chemical

properties; uses.

UNIT XIII: Organic Compounds Containing Nitrogen

• Amines: Nomenclature, classification, structure, methods of preparation, physical and chemical

properties, uses, identification of primary secondary and tertiary amines.

• Cyanides and Isocyanides- will be mentioned at relevant places.

• Diazonium salts: Preparation, chemical reactions and importance in synthetic organic chemistry.

UNIT XIV: Biomolecules

• Carbohydrates- Classification (aldoses and ketoses), monosaccharide (glucose and fructose), D.L.

configuration, oligosaccharides (sucrose, lactose, maltose), polysaccharides (starch, cellulose,

glycogen): importance.

• Proteins- Elementary idea of – amino acids, peptide bond, polypeptides, proteins, primary

structure, secondary structure, tertiary structure and quaternary structure (qualitative idea only),

denaturation of proteins; enzymes.

• Hormones- Elementary idea (excluding structure).

• Vitamins- Classification and function.

• Nucleic Acids: DNA and RNA

UNIT XV: Polymers

• Classification- Natural and synthetic, methods of polymerization (addition and condensation),

copolymerization. Some important polymers: natural and synthetic like polyesters, bakelite;

rubber, Biodegradable and non-biodegradable polymers.

UNIT XVI: Chemistry in Everyday Life

• Chemicals in medicines- analgesics, tranquilizers, antiseptics, disinfectants, antimicrobials,

antifertility drugs, antibiotics, antacids, antihistamines.

• Chemicals in food- preservatives, artificial sweetening agents, elementary idea of antioxidants. 

• Cleansing agents- soaps and detergents, cleansing action.



NEET BIOLOGY SYLLABUS 2023

Class 11th Syllabus

Class 12th Syllabus

Diversity in the Living World

Reproduction

Structural Organisation – Plants and Animals

Genetics and Evolution

Cell Structure and Function

Biology and Human welfare

Plant Physiology

Biotechnology and its applications

Human physiology

Ecology and environment

 

BIOLOGY: CONTENTS OF CLASS XI SYLLABUS

UNIT I: Diversity in Living World

• What is living?; Biodiversity; Need for classification; Three domains of life;Taxonomy

ribosomes, plastids, micro bodies; Cytoskeleton, cilia, flagella, centrioles (ultra structure and

function); Nucleus-nuclear membrane, chromatin, nucleolus.

• Five kingdom classification; salient features and classification of Monera; Protista and Fungi into

major groups; Lichens; Viruses and Viroids.

• Salient features and classification of plants into major groups-Algae, Bryophytes, Pteridophytes,

Gymnosperms and Angiosperms (three to five salient and distinguishing features and at least two

examples of each category); Angiosperms classification up to class, characteristic features and

examples).

• Salient features and classification of animals-nonchordate up to phyla level and chordate up to

classes level (three to five salient features and at least two examples).

UNIT II: Structural Organisation in Animals and Plants

• Morphology and modifications; Tissues; Anatomy and functions of different parts of flowering

plants: Root, stem, leaf, inflorescence- cymose and recemose, flower, fruit and seed (To be dealt

along with the relevant practical of the Practical Syllabus).

• Animal tissues; Morphology, anatomy and functions of different systems (digestive, circulatory,

respiratory, nervous and reproductive) of an insect (cockroach). (Brief account only)

UNIT III: Cell Structure and Function

• Cell theory and cell as the basic unit of life; Structure of prokaryotic and eukaryotic cell; Plant cell

and animal cell; Cell envelope, cell membrane, cell wall; Cell organelles-structure and function;

Endomembrane system-endoplasmic reticulum, Golgi bodies, lysosomes, vacuoles; mitochondria,

ribosomes, plastids, micro bodies; Cytoskeleton, cilia, flagella, centrioles (ultra structure and

function); Nucleus-nuclear membrane, chromatin, nucleolus.

• Chemical constituents of living cells: Biomolecules-structure and function of proteins,

carbodydrates, lipids, nucleic acids; Enzymes-types, properties, enzyme action.

• B Cell division: Cell cycle, mitosis, meiosis and their significance.

UNIT IV: Plant Physiology

• Transport in plants: Movement of water, gases and nutrients; Cell to cell transport-Diffusion,

facilitated diffusion, active transport; Plant – water relations – Imbibition, water potential,

osmosis, plasmolysis; Long distance transport of water – Absorption, apoplast, symplast,

transpiration pull, root pressure and guttation; Transpiration-Opening and closing of stomata;

Uptake and translocation of mineral nutrients-Transport of food, phloem transport, Mass flow

hypothesis; Diffusion of gases (brief mention).

• Mineral nutrition: Essential minerals, macro and micronutrients and their role; Deficiency

symptoms; Mineral toxicity; Elementary idea of Hydroponics as a method to study mineral

nutrition; Nitrogen metabolism-Nitrogen cycle, biological nitrogen fixation.

• Photosynthesis: Photosynthesis as a means of Autotrophic nutrition; Site of photosynthesis take

place; pigments involved in Photosynthesis (Elementary idea); Photochemical and biosynthetic

phases of photosynthesis; Cyclic and non cyclic and photophosphorylation; Chemiosmotic

hypothesis; Photorespiration C3 and C4 pathways; Factors affecting photosynthesis.

• Respiration: Exchange gases; Cellular respiration-glycolysis, fermentation (anaerobic), TCA

cycle and electron transport system (aerobic); Energy relations- Number of ATP molecules

generated; Amphibolic pathways; Respiratory quotient.

• Plant growth and development: Seed germination; Phases of Plant growth and plant growth rate;

Conditions of growth; Differentiation, dedifferentiation and redifferentiation; Sequence of

developmental process in a plant cell; Growth regulators-auxin, gibberellin, cytokinin, ethylene,

ABA; Seed dormancy; Vernalisation; Photoperiodism.

UNIT V: Human Physiology

• Digestion and absorption; Alimentary canal and digestive glands; Role of digestive enzymes and

gastrointestinal hormones; Peristalsis, digestion, absorption and assimilation of proteins,

carbohydrates and fats; Caloric value of proteins, carbohydrates and fats; Egestion; Nutritional

and digestive disorders – PEM, indigestion, constipation, vomiting, jaundice, diarrhea.

• Breathing and Respiration: Respiratory organs in animals (recall only); Respiratory system in

humans; Mechanism of breathing and its regulation in humans-Exchange of gases, transport of

gases and regulation of respiration Respiratory volumes; Disorders related to respiration-Asthma,

Emphysema, Occupational respiratory disorders.

• Body fluids and circulation: Composition of blood, blood groups, coagulation of blood;

Composition of lymph and its function; Human circulatory system-Structure of human heart and

blood vessels; Cardiac cycle, cardiac output, ECG, Double circulation; Regulation of cardiac

activity; Disorders of circulatory system-Hypertension, Coronary artery disease, Angina pectoris,

Heart failure.

• Excretory products and their elimination: Modes of excretion- Ammonotelism, ureotelism,

uricotelism; Human excretory system-structure and fuction; Urine formation, Osmoregulation;

Regulation of kidney function-Renin-angiotensin, Atrial Natriuretic Factor, ADH and Diabetes

insipidus; Role of other organs in excretion; Disorders; Uraemia, Renal failure, Renal calculi,

Nephritis; Dialysis and artificial kidney.

• Locomotion and Movement: Types of movement- ciliary, fiagellar, muscular; Skeletal musclecontractile proteins and muscle contraction; Skeletal system and its functions (To be dealt with the relevant practical of Practical syllabus); Joints; Disorders of muscular and skeletal system- Myasthenia gravis, Tetany, Muscular dystrophy, Arthritis, Osteoporosis, Gout.

• Neural control and coordination: Neuron and nerves; Nervous system in humanscentral nervous

system, peripheral nervous system and visceral nervous system; Generation and conduction of

nerve impulse; Reflex action; Sense organs; Elementary structure and function of eye and ear.

• Chemical coordination and regulation: Endocrine glands and hormones; Human endocrine system-

Hypothalamus, Pituitary, Pineal, Thyroid, Parathyroid, Adrenal, Pancreas, Gonads; Mechanism of

hormone action (Elementary Idea); Role of hormones as messengers and regulators, Hypo-and

hyperactivity and related disorders (Common disorders e.g. Dwarfism, Acromegaly, Cretinism,

goiter, exopthalmic goiter, diabetes, Addison’s disease).

(Imp: Diseases and disorders mentioned above to be dealt in brief.)


BIOLOGY: CONTENTS OF CLASS XII SYLLABUS

UNIT I: Reproduction

• Reproduction in organisms: Reproduction, a characteristic feature of all organisms for

continuation of species; Modes of reproduction – Asexual and sexual; Asexual reproduction;

Modes-Binary fission, sporulation, budding, gemmule, fragmentation; vegetative propagation in

plants.

• Sexual reproduction in flowering plants: Flower structure; Development of male and female

gametophytes; Pollination-types, agencies and examples; Outbreeding devices; Pollen-Pistil

interaction; Double fertilization; Post fertilization events- Development of endosperm and

embryo, Development of seed and formation of fruit; Special modes-apomixis, parthenocarpy,

polyembryony; Significance of seed and fruit formation.

• Human Reproduction: Male and female reproductive systems; Microscopic anatomy of testis and

ovary; Gametogenesis-spermatogenesis & oogenesis; Menstrual cycle; Fertilisation, embryo

development upto blastocyst formation, implantation; Pregnancy and placenta formation

(Elementary idea); Parturition (Elementary idea); Lactation (Elementary idea).

• Reproductive health: Need for reproductive health and prevention of sexually transmitted diseases

(STD); Birth control-Need and Methods, Contraception and Medical Termination of Pregnancy

(MTP); Amniocentesis; Infertility and assisted reproductive technologies – IVF, ZIFT, GIFT

(Elementary idea for general awareness).

UNIT II: Genetics and Evolution

• Heredity and variation: Mendelian Inheritance; Deviations from Mendelism- Incomplete

dominance, Co-dominance, Multiple alleles and Inheritance of blood groups, Pleiotropy;

Elementary idea of polygenic inheritance; Chromosome theory of inheritance; Chromosomes and

genes; Sex determination-In humans, birds, honey bee; Linkage and crossing over; Sex linked

inheritance-Haemophilia, Colour blindness; Mendelian disorders in humans-Thalassemia;

Chromosomal disorders in humans; Down’s syndrome, Turner’s and Klinefelter’s syndromes.

• Molecular basis of Inheritance: Search for genetic material and DNA as genetic material; Structure

of DNA and RNA; DNA packaging; DNA replication; Central dogma; Transcription, genetic

code, translation; Gene expression and regulation- Lac Operon; Genome and human genome

project; DNA finger printing.

• Evolution: Origin of life; Biological evolution and evidences for biological evolution from

Paleontology, comparative anatomy, embryology and molecular evidence); Darwin’s

contribution, Modern Synthetic theory of Evolution; Mechanism of evolution-Variation (Mutation

and Recombination) and Natural Selection with examples, types of natural selection; Gene flow

and genetic drift; Hardy-Weinberg’s principle; Adaptive Radiation; Human evolution.

Typhoid, Pneumonia, common cold, amoebiasis, ring worm); Basic concepts of immunologyvaccines;

Cancer, HIV and AIDS; Adolescence, drug and alcohol abuse.

UNIT III: Biology and Human Welfare

• Health and Disease; Pathogens; parasites causing human diseases (Malaria, Filariasis, Ascariasis.

Information Bulletin: NEET (UG) - 2023

• Improvement in food production; Plant breeding, tissue culture, single cell protein,

Biofortification; Apiculture and Animal husbandry.

• Microbes in human welfare: In household food processing, industrial production, sewage

treatment, energy generation and as biocontrol agents and biofertilizers.

UNIT IV: Biotechnology and Its Applications

• Principles and process of Biotechnology: Genetic engineering (Recombinant DNA technology).

• Application of Biotechnology in health and agriculture: Human insulin and vaccine production,

gene therapy; Genetically modified organisms-Bt crops; Transgenic Animals; Biosafety issues-

Biopiracy and patents.

UNIT V: Ecology and Environment

• Organisms and environment: Habitat and niche; Population and ecological adaptations; Population

interactions-mutualism, competition, predation, parasitism; Population attributes-growth, birth

rate and death rate, age distribution.

• Ecosystem: Patterns, components; productivity and decomposition; Energy flow; Pyramids of

number, biomass, energy; Nutrient cycling (carbon and phosphorous); Ecological succession;

Ecological Services-Carbon fixation, pollination, oxygen release.

• Biodiversity and its conservation: Concept of Biodiversity; Patterns of Biodiversity; Importance

of Biodiversity; Loss of Biodiversity; Biodiversity conservation; Hotspots, endangered organisms,

extinction, Red Data Book, biosphere reserves, National parks and sanctuaries.

• Environmental issues: Air pollution and its control; Water pollution and its control; Agrochemicals

and their effects; Solid waste management; Radioactive waste management; Greenhouse effect

and global warning; Ozone depletion; Deforestation; Any three case studies as success stories

addressing environmental issues.



No comments:

Post a Comment